The Autonomous Future Is Paved with Lots and Lots of Data

15 October 2019 Dashboard Insights Blog

It should come as no surprise that vehicles driven largely by a computer, will not only require a lot of data to safely navigate the streets, but these systems will also generate a lot of data over the course of their trip, as well. Not only will this complicate who owns the data and how to protect the data, but it also implicates how this data should be used. To some stakeholders this information will be vital to further optimize driving systems and city-landscapes as our urban centers become more and more congested. To others, implications of privacy and a burden on internet infrastructures means sharing of data should be limited to the greatest extent possible. But, this also means that infrastructures, business models, and concepts of how data is managed and moved will evolve with the autonomous vehicle as well, in an effort to work with these stakeholders and consumers. The transition to these data-heavy driving systems will be gradual, dependent on not only technological advancements, but based on buy-in by regulators and consumers alike. Regardless of the potential use of this data, what is known is that the infrastructure as we have it now, will not be the system we see in five years, let alone 25 years. 

The shift from human drivers, to semi-autonomous and fully autonomous systems will mean magnitudes more data to be stored, data to be analyzed, and for some, data to be shared. And this data won’t come simply from the cars themselves, cities are looking to expand smart systems, it means data coming from street lights and traffic lights, bridges and tolls, and the roads themselves. This data being generated won’t be small. In some cases, some of the autonomous vehicles might generate up to four terabytes of data per date (for comparison, the average photo taken by your smartphone is less than 10 megabytes and one terabyte equals approximately 1 million megabytes). Not all this data will be stored on the vehicle. Some might be analyzed in real time, on the vehicle as it looks to navigate the roadways. In other instances, it might be uploaded to a server in another city, state, or country, for further analysis. In other instances, it might be sent to other vehicles or to the infrastructure to assist fellow drivers in real time. 

This endless necessity to connect to a system means cities and roadways will need to harden their infrastructure for low-latency wireless communication and data storage systems to comprehend the unfathomable amount of data generated each minute of each day. The Automotive Edge Computing Consortium, or AECC estimates that by 2025, the amount of data generated each month by autonomous vehicles could exceed 10 exabytes per month (this is just under 1,010,000,000,000 megabytes, or about 1,000 times the amount of data generated today). 

To some, the roll out of the next generation of cellular towers, known as 5G, will be the forefront of this data-driven automotive industry. This next generation of wireless system will have higher speeds and lower latency than the current industry standard of 4G. Even that system may not be enough to manage the monolithic amount of data uploaded on a daily basis. Even further complicating matters, some systems might require real-time communication with their cloud-based systems to ensure correct positioning and understanding of the environment around them. This becomes further complicated as 5G cellular connections suffer from shorter ranges than 4G systems, and easily encounter interference due to buildings and other structures. This means that urban and suburban settings could see decayed connectivity when infrastructure strain becomes too great. 

In an effort to combat infrastructure strain, some system architects are looking at integrating mesh networks and mobile-micro clouds amongst the on-the-road vehicles as a supplement or replacement to their centralized systems. This mesh system will connect the vehicles on the road with each other. This communication between vehicles will enable them to share their own spatial awareness and leverage the computing power amongst each vehicle in the mesh network to process their collective surroundings. This will amplify the computer power of an individual car to that of the mesh network, as well as enable the system to communicate in quicker sequence, with less latency and more real-time data.  

As autonomous vehicles integrate into our day-to-day commuting lives, the data they generate will not only help us move to and from our desired location, but tell us more about our daily commutes than we could likely imagine. As this data becomes generated, transmitting, analyzing, and storing this data will remain an ever growing challenge, beyond the struggle of safely navigating our roadways.

This blog is made available by Foley & Lardner LLP (“Foley” or “the Firm”) for informational purposes only. It is not meant to convey the Firm’s legal position on behalf of any client, nor is it intended to convey specific legal advice. Any opinions expressed in this article do not necessarily reflect the views of Foley & Lardner LLP, its partners, or its clients. Accordingly, do not act upon this information without seeking counsel from a licensed attorney. This blog is not intended to create, and receipt of it does not constitute, an attorney-client relationship. Communicating with Foley through this website by email, blog post, or otherwise, does not create an attorney-client relationship for any legal matter. Therefore, any communication or material you transmit to Foley through this blog, whether by email, blog post or any other manner, will not be treated as confidential or proprietary. The information on this blog is published “AS IS” and is not guaranteed to be complete, accurate, and or up-to-date. Foley makes no representations or warranties of any kind, express or implied, as to the operation or content of the site. Foley expressly disclaims all other guarantees, warranties, conditions and representations of any kind, either express or implied, whether arising under any statute, law, commercial use or otherwise, including implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In no event shall Foley or any of its partners, officers, employees, agents or affiliates be liable, directly or indirectly, under any theory of law (contract, tort, negligence or otherwise), to you or anyone else, for any claims, losses or damages, direct, indirect special, incidental, punitive or consequential, resulting from or occasioned by the creation, use of or reliance on this site (including information and other content) or any third party websites or the information, resources or material accessed through any such websites. In some jurisdictions, the contents of this blog may be considered Attorney Advertising. If applicable, please note that prior results do not guarantee a similar outcome. Photographs are for dramatization purposes only and may include models. Likenesses do not necessarily imply current client, partnership or employee status.

Related Services


Foley Automotive Report
06 December 2022
Dashboard Insights
Episode 3: The Future Powered By Hyperscale Cloud Computing with David Sloan of Microsoft
06 December 2022
Innovative Technology Insights
2023 M&A Outlook
05 December 2022
Foley Ignite
COVID-related Form I-9 Remote Verification Flexibilities Extended Through July 31, 2023
05 December 2022
Labor & Employment Law Perspectives
What You Should Know About Payor/Provider Convergence
25-26 January 2023
Los Angeles, CA
ATA EDGE2022 Policy Conference | American Telemedicine Association
7-9 December 2022
Washington, D.C.
CLE Weeks
5-16 December 2022
Milwaukee, WI
Foley Sponsors Ernst & Young Entrepreneur of the Year® Program
1 December 2021 - 30 November 2022
Michigan and Northwest Ohio Region